

Transverse Λ and $\overline{\Lambda}$ polarization with a transversely polarized proton target

Donghee Kang Universität Mainz

- Introduction
- COMPASS experiment
- Transversity from transverse Λ & $\overline{\Lambda}$ polarization
- Conclusion & outlook

bmb+f - Förderschwerpunkt COMPASS Großgeräte der physikalischen

DPG spring meeting 20.März 2009, Bochum

Spin of nucleon

The spin puzzle of nucleon is going to be completed ...

Transversity distributions are also need to completely describe the spin structure of the nucleon.

Semi-Inclusive Deep Inelastic Scattering (SIDIS) :

To measure chiral-odd $\Delta_T q$, requires another chiral-odd partner : polarized fragmentation function $\Delta_T D$

Accessible by production of

- $lN^{\uparrow} \rightarrow l'hX$: Collins function
- $lN^{\uparrow} \rightarrow l'h_1h_2X$: Interference fragmentation function
- $lN^{\uparrow} \rightarrow l'\Lambda^{\uparrow}X$: Λ production

Transversity $\Delta_T q(x)$ can be measured in SIDIS on a transversely polarized target via " Λ polarization"

Transverse Λ polarization

$$\mu N^{\uparrow} \rightarrow \mu' \Lambda^{\uparrow} X \quad @ \text{DIS} (Q^2 > 1 (\text{GeV/c})^2)$$

Factorizations of $\Delta_T q(x)$ and $\Delta_T D(z)$ by their different parameters :

$$x_{Bj} = \frac{Q^2}{2M\nu}, \quad z = \frac{E_{\Lambda}}{E_{\mu} - E_{\mu'}}$$

Transverse Λ polarization from transversely polarized target $P_{\Lambda} = \frac{d\sigma^{lN^{\uparrow} \to l'\Lambda^{\uparrow}X} - d\sigma^{lN^{\uparrow} \to l'\Lambda^{\Downarrow}X}}{d\sigma^{lN^{\uparrow} \to l'\Lambda^{\Downarrow}X} + d\sigma^{lN^{\uparrow} \to l'\Lambda^{\Downarrow}X}} = f P_{T}D_{T}(y) \frac{\sum_{q} e_{q}^{\Lambda} \Delta_{T}q(x) \Delta_{T}D_{q}^{\Lambda}(z)}{\sum_{q} e_{q}^{2}q(x)D_{q}^{\Lambda}(z)}$ $\Delta_{T}q(x) = \text{transversely polarized quark distribution}$ q(x) = unpolarized quark distribution function $\Delta_{T}D_{q}(z) = \text{transversely polarized fragmentation function}$ $D_{q}(z) = \text{unpolarized fragmentation function}$ $D_{T}(y) = \frac{2(1-y)}{1+(1-x)^{2}}$

COMPASS spectrometer

Identification of $\Lambda \rightarrow p\pi^-$, $\overline{\Lambda} \rightarrow \overline{p}\pi^+$, $K^0 \rightarrow \pi^+\pi^-$

Data Analysis in 2007

- 50% of time dedicated to transversity runs
- $Q^2 > 1 (\text{GeV/c})^2$
- 0.1 < y < 0.9
- $P_{\rm T}$ > 23 MeV/c to exclude e⁺e⁻ pair-production
- Application of RICH

a : Asymmetry of longitudinal momentum component between + and – track

Λ selection using RICH

PID : RICH

- Hadron masses calculated from the measured chêrenkov angle θ_{ch}
- Separation between π, K and p in the momentum range 2~50 GeV/c
- π⁺, K⁺(π⁻, K⁻) veto for proton (antiproton) candidate
- Likelihood methods are used to reject π and K for proton candidate in the decay of $\Lambda \rightarrow p\pi^-$ and $\overline{\Lambda} \rightarrow \overline{p}\pi^+$

Invariant mass of Λ and $\overline{\Lambda}$

Coordinate system

Angular distribution of decay product :

- Decay violates parity \rightarrow not isotropic $N(\theta) \propto (1 + \alpha P_T^{\Lambda} \cos \theta) \cdot Acc(\theta)$
- Slope of the daughter baryon $\cos \theta$ distribution is given by αP_{4}^{T}
- Magnitude of asymmetry parameters are same for Λ and $\overline{\Lambda}$

 $\alpha = \pm 0.642 \pm 0.013$

• Acceptance effect to be corrected

Bias cancellation

Three target cells with weekly reversal target polarizaiton :

Period 1.

- Acceptance correction from data using up-down symmetry of angular distribution
- Recombination of data samples with the assumption of $Acc^{\uparrow}_{1(2)}(\theta) = Acc^{\downarrow}_{2(1)}(\theta)$
- "Geometrical mean" grants independence from acceptance effects :

$$\frac{\left[\sqrt{N_{1}^{\uparrow}(\theta)N_{2}^{\uparrow}(\theta)} + \sqrt{N_{1}^{\downarrow}(\pi - \theta)N_{2}^{\downarrow}(\pi - \theta)}\right] - \left[\sqrt{N_{1}^{\uparrow}(\pi - \theta)N_{2}^{\uparrow}(\pi - \theta)} + \sqrt{N_{1}^{\downarrow}(\theta)N_{2}^{\downarrow}(\theta)}\right]}{\left[\sqrt{N_{1}^{\uparrow}(\theta)N_{2}^{\uparrow}(\theta)} + \sqrt{N_{1}^{\downarrow}(\pi - \theta)N_{2}^{\downarrow}(\pi - \theta)}\right] + \left[\sqrt{N_{1}^{\uparrow}(\pi - \theta)N_{2}^{\uparrow}(\pi - \theta)} + \sqrt{N_{1}^{\downarrow}(\theta)N_{2}^{\downarrow}(\theta)}\right]} = \alpha P_{T}^{\Lambda} \cos\theta$$

Transverse $\Lambda \& \overline{\Lambda}$ polarization

Systematic errors have been estimated to be smaller than statistical errors

Interpretation of results

- HERMES / COMPASS / BELLE combined results for collins asymmetry
- For proton target a positive Δ_Tq(x) is expected :

$$2 \cdot \Delta_T \mathbf{u}(x) + 1 \cdot \Delta_T \mathbf{d}(x) > 0$$

- $\Delta_T D(z)$ seems to be very small in 0 < z < 0.5: nearly no analyzing power
- Need extended kinematic : $x_{Bj} > 0.1$ and $z_{\Lambda} > 0.5$

Conclusions and Outlook

- Transverse $\Lambda \& \overline{\Lambda}$ polarization with transversely polarized target have been studied to bring an information of transversity in the DIS region at COMPASS
 - Transverse Λ & $\overline{\Lambda}$ polarization are compatible with 0
- $\Lambda \& \overline{\Lambda}$ have no clear x_{Bj} and z dependence of polarization with proton target
 - $-\Delta_T q(x) \cdot \Delta_T D_q^{\Lambda}(z)$ is small
 - Very soon : Analysis of the whole 2007 proton data sample will allow to reduce considerably the statistical error

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

