### Johannes Bernhard<sup>1</sup>

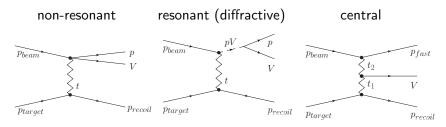
Institut für Kernphysik Mainz

### on behalf of the COMPASS collaboration

March 7<sup>th</sup> 2013






bmb+f - Förderschwerpunkt COMPASS Großgeräte der physikalischen

Grundlagenforschung

<sup>1</sup>Contact: johannes.bernhard@cern.ch

## Production mechanisms

#### At medium beam energies, $\mathcal{O}(100 \text{ GeV})$ :



Try to understand interplay by studying strangeness transfer in well-understood vector meson production ("strangeness chemistry"):

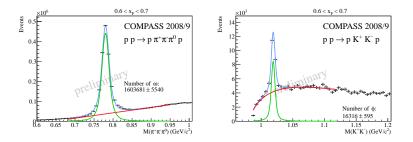
- $\phi(1020)$  is close to pure  $s\bar{s}$  state
- $\omega(782)$  is close to pure  $u\bar{u}/d\bar{d}$  state

Idea: study empirical model (corrected for non-ideal mixing) <u>**O**kubo-**Z**weig-Iizuka rule</u>: processes with disconnected quark lines suppressed prediction for  $\phi(1020)$  to  $\omega(782)$  production ratios:

$$\sigma(pp o \phi X) / \sigma(pp o \omega X) \simeq \tan^2(\theta - \theta_0) \simeq 4.2 \cdot 10^{-3}$$

Violation of ratio hints at flavour-neutral exchange processes

Study at COMPASS: Compare  $\phi(1020) \longrightarrow K^+K^-$  to  $\omega(782) \longrightarrow \pi^+\pi^-\pi^0$  production Necessary to measure full kinematics of all involved particles (exclusive events) Restriction to similar, well-known phase space for both  $\omega$  and  $\phi$  by cuts on

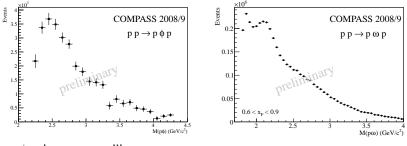

- longitudinal momentum share  $(x_F)$
- momentum transfer (t')
- mass of pV system  $(M_{pV})$

Method:

- Monte-Carlo simulation of apparatus acceptance, 3D correction in t',  $x_F$  and  $M_{pV}$
- General fit acceptance corrected invariant mass distributions in  $x_F$  bins ⇒ yields
- $\textbf{ orrect for branching} \Rightarrow \text{corrected yields}$

• calculate 
$$R = rac{\text{Number of } \phi}{\text{Number of } \omega}$$

# Preliminary Results $R_{\phi/\omega}$




Differential cross section ratio  $R_{\phi/\omega}(x_F)$  (preliminary):

| XF      | $R_{\phi/\omega}$ | OZI violation factor            |
|---------|-------------------|---------------------------------|
| 0.6-0.7 | 0.019             | $\textbf{4.5}\pm\textbf{0.6}$   |
| 0.7-0.8 | 0.017             | $\textbf{4.0} \pm \textbf{0.5}$ |
| 0.8-0.9 | 0.012             | $2.9\pm0.4$                     |

What is the reason for the violation?

Investigate mass of pV system:



 $p\phi$ : phase-space-like, no structures

 $p\omega$ : resonances

Restrict measurement to region without visible structures, but still compare to  $\phi$  within in the same phase space!

 $\Rightarrow$  cut on vector meson momentum  $p_V$ , independent of mass differences

|         | $p_V > 1.0 \; ({ m GeV}/c)$ |                                                                          | $p_V > 1.4 \; ({ m GeV}/c)$ |                                 |
|---------|-----------------------------|--------------------------------------------------------------------------|-----------------------------|---------------------------------|
| XF      | $R_{\phi/\omega}$           | OZI viol.                                                                | $R_{\phi/\omega}$           | OZI viol.                       |
| 0.6-0.7 | 0.032                       | $7.6\pm1.0$                                                              |                             |                                 |
| 0.7-0.8 | 0.038                       | $9.0\pm1.1$                                                              | 0.033                       | $7.9\pm1.1$                     |
| 0.8-0.9 | 0.019                       | $\begin{array}{c} 7.6 \pm 1.0 \\ 9.0 \pm 1.1 \\ 4.5 \pm 0.6 \end{array}$ | 0.032                       | $\textbf{7.6} \pm \textbf{1.0}$ |

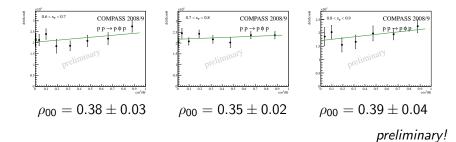
preliminary!

Spin alignment of vector mesons is a handle to distinguish production mechanisms, cross section linearly parameterised<sup>2</sup> in terms of spin density matrix element  $\rho_{00}$ 

$$d\sigma/d\cos\theta \propto N(1-
ho_{00}+(3
ho_{00}-1)\cos^2 heta)$$

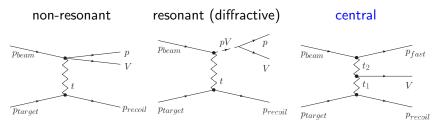
Spin density matrix has representation depending on reference frame, *e.g.* helicity frame:

- with forward system R (e.g.  $p\phi$ ),  $\hat{z} = |\vec{R}|$  in CM(V) system
- analyser to define angles:


1 
$$\vec{n} = \vec{K}^+ \text{ or } \vec{K}^- \text{ for } \phi$$
  
2  $\vec{n} = \vec{\pi}^+ \times \vec{\pi}^- \text{ for } \omega$ 

N.B.:  $\rho_{00}=0$  long. alignment,  $\rho_{00}=0.33$  arbitrary alignment,  $\rho_{00}=1$  transverse alignment

<sup>&</sup>lt;sup>2</sup>K. Schilling, P. Seyboth and G. Wolf, Nucl. Phys. B 15 (1969) 397


Spin alignment of vector mesons is a handle to distinguish production mechanisms, cross section linearly parameterised<sup>2</sup> in terms of spin density matrix element  $\rho_{00}$ 

$$d\sigma/d\cos heta\propto N(1-
ho_{00}+(3
ho_{00}-1)\cos^2 heta)$$



<sup>&</sup>lt;sup>2</sup>K. Schilling, P. Seyboth and G. Wolf, Nucl. Phys. B 15 (1969) 397

## Two-particle exchanges



Define new reference axis along momentum transfer  $\vec{p}_{beam} - \vec{p}$ , sensitive to central mechanisms / two particle exchanges

| Reaction                            | X <sub>F</sub> | $ ho_{00}$ | Uncertainty |
|-------------------------------------|----------------|------------|-------------|
| $pp  ightarrow pp \phi$             | 0.6-0.7        | 0.51       | 0.03        |
| ${\it pp}  ightarrow {\it pp} \phi$ | 0.7-0.8        | 0.58       | 0.02        |
| ${\it pp}  ightarrow {\it pp} \phi$ | 0.8-0.9        | 0.67       | 0.04        |

preliminary!

# Summary and Outlook

Study of production mechanisms at medium energies via

- OZI rule violation / production ratio  $R(\phi/\omega)$
- spin alignment

Results:

- found OZI violation of factor 3-4, low violation due to resonances
- OZI violation universally 8 when visible pω resonances excluded (interestingly, also for low energy measurements near threshold!)
- weak alignment of  $\phi$  mesons, no obvious structures in  $p\phi$  mass spectrum
- $\bullet$  observe strong (transverse) alignment for  $\phi$  with respect to exchange particle direction

Outlook:

- not shown:  $\omega$  alignment results
- Publication in preparation