Bestimmung von Hadronmultiplizitäten am COMPASS Experiment

Johannes Giarra (JGU Mainz)

HK 1.5

14.03.2016

Motivation

- keine freien Quarks beobachtbar (confinement)
- Hadronisierung durch Fragmentationsfunktionen (FF) beschrieben

 $\mathbf{Quarks} \Longleftrightarrow \mathbf{Hadron}$

Wie lassen sich die FF bestimmen?

- expermienteller Zugriff
 - \rightarrow Hadronmultiplizitäten
- Information über Anzahl der produzierten Hadronen
 → semi-inklusive tiefinelastische Lepton-Nukleon Streuung (SIDIS)
- \Rightarrow Korrekturen der Multiplizitäten nötig
 - Effizienz der Teilchenidentifikation
 - Spektrometerakzeptanz

Tiefinelastische Streuung (DIS)

DIS Prozess:

$$l + N \rightarrow l' + X$$

 $\rightarrow \textbf{SIDIS} \text{ zusätzlicher Nachweis} \\ \text{von Hadronen}$

$$l + N \rightarrow l' + h + X$$

kin. Variablen:

•
$$y = \frac{\nu}{E} \text{ mit } \nu = E - E'$$

• $q^2 = -Q^2 = (k - k')^2$
• $x = \frac{Q^2}{2M\nu}$
• $W^2 = (P_N + q)^2 = M^2 + 2M\nu - Q^2$
• $z = \frac{E_h}{\nu}$

DIS Selektion:

- $Q^2 > 1 \text{ GeV}/c^2$
- 0.1 < *y* < 0.7
- 0.004 < *x* < 0.4

•
$$5 < W < 17 \text{ GeV}/c^2$$

COMPASS Aufbau 2012

RICH-Detektor

Ring Imaging CHerenkov-Detektor

- Basiert auf Cherenkoveffekt
- $\bullet\,$ Photonen auf Photodetektoren projiziert $\to\,$ Ring

radiale Photonenverteilung einer Teilchenart zuweisen \rightarrow Likelihood Methode

Definition:

$$E(t \rightarrow i) = \frac{N^{t \rightarrow i}}{N^t} (t = \pi, K, p; i = \pi, K, p, unk)$$

 $N^{t \rightarrow i}$: Anzahl der Teilchen t vom RICH als i identifiziert

N^t: Gesamtzahl der Teilchen t

 \Rightarrow aus gemessenen Daten

Methode:

- Wissen welche Teilchenart in RICH einfällt → durch Datenselektion
- **②** Bekannt: Effizenzen abhängig von Impuls und Winkel $\rightarrow N^t$ und $N^{t \rightarrow i}$ durch Fit

Φ-Zerfall

•
$$\Phi \rightarrow K^+K^-$$

Zerfall der starken WW

⇒ Entstehungs- und Zerfallsvertex ununterscheidbar

K_0 - und $\Lambda_0/\overline{\Lambda}_0$ -Zerfall

- $K_0 \rightarrow \pi^+ \pi^-$
- $\Lambda_0/\overline{\Lambda}_0 \to \pi^- p/\pi^+ \overline{p}$

Zerfälle der schwachen WW

- ⇒ Entstehungs- (p) und Zerfallsvertex (s) separat auflösbar
- → mehr Schnitte möglich

μ μ' π Κο π' π'

ц'.

Daten: Jahr: 2012; Woche: 44 - 48; μ^{\pm} -Strahl (160 GeV); IH₂-Target

Schnitte für K₀-Zerfall

Schnitte auf Daten

 $\Rightarrow \mathsf{Reduktion} \ \mathsf{des} \\ \mathsf{Untergrunds} \\$

Beispiel für Schnitte:

- Sekundärer Vertex nur genau einem primären Vertex zugeordnet
- Sekundärer und primärer Vertex verbunden

Vergleich Schnitte für Λ- und Φ-Zerfall

∧-Zerfall

Φ-Zerfall

Bekannt: Effizienzen abhängig von Winkel und Impuls 13 Impulsintervalle: 10 - 50 (GeV/c) 3 Winkelintervalle: 0.0 - 0.12 (rad)

Bsp.: $K_0 \rightarrow \pi^+\pi^-$

- Teilchenwahl z.B. π^+
 - \rightarrow RICH (LH vgl.) korrekt identifiziert
 - \Rightarrow Gesamtzahl \mathbf{N}^{t}
- zugehöriges π^- in Impuls- und Winkelintervall
 - \rightarrow als π^- , K^- , \overline{p} oder unk^- identifiziert
 - \Rightarrow Anzahl identifiziert $\mathbf{N}^{t \rightarrow i}$
- \Rightarrow analog für anderes Teilchens, sowie $\Lambda_0,\,\overline{\Lambda}_0$ und Φ

mass (GeV

Signalfit + Untergrundfit = gesamt Fit

RICH Effizenzen $\pi^+ \rightarrow i$

Berücksichtigt Geometrie und Effizienz des Spektrometers

- \rightarrow vgl. mit anderen Experimenten
- \rightarrow aus Monte Carlo Daten

Methode:

• Definition:

$$A^{h}(x, y, z) = \frac{M_{hc}^{h}(x_{rec}, y_{rec}, z_{rec})}{M_{gen}^{h}(x_{gen}, y_{gen}, z_{gen})} = \frac{N_{hc}^{h}(x_{rec}, y_{rec}, z_{rec})/N_{rec}^{DC}(x_{rec}, y_{rec})}{N_{gen}^{h}(x_{gen}, y_{gen}, z_{gen})/N_{gen}^{DC}(x_{gen}, y_{gen})}$$

 $M_{rec}^{h}(x_{rec}, y_{rec}, z_{rec})$: Hadronmultiplizität aus rekonstruierten Events $M_{gen}^{h}(x_{gen}, y_{gen}, z_{gen})$: Hadronmultiplizität aus generierten Events

Datenselektion

rekonstruierte Events \rightarrow wie reale Daten generierte Events \rightarrow nur kinematische Schnitte

Zusammenfassung:

• Korrekturen der Hadronmultiplizitäten

- \rightarrow Teilchenidentifikation
- \rightarrow Spektrometerakzeptanz

Teilchenidentifikation

 \rightarrow RICH-Detektor und Verfahren zur Bestimmung der Effizienzen

Spektrometerakzeptanz

 \rightarrow Methode zur Bestimmung

Vielen Dank für die Aufmerksamkeit !!