COMPASS - a facility to study **QCD**

Eva-Maria Kabuß,

Institut für Kernphysik, Mainz University for the COMPASS collaboration

KHuK Jahrestagung 2010 Bad Honnef, 2./3.10.2010

- COMPASS experiment
- What we have done
- What we want to do

Bielefeld, Bochum, Bonn, Burdwan/Calcutta, CERN, Dubna, Erlangen, Freiburg, Lissabon, Mainz, Moscow, Munich, Prague, Protvino, Saclay, Tel Aviv, Turino, Trieste, Warsaw, Yamagata (30 institutes, 240 physicists)

$\begin{array}{c} CO_{\text{MMON}} M_{\text{UON} \text{ and }} P_{\text{ROTON}} A_{\text{PPARATUS}} \\ \\ \text{For } S_{\text{Tructure and }} S_{\text{Pectroscopy}} \end{array}$

Muon beam

Spin dependent structure functions Gluon polarisation Polarised quark distributions Transversity Lambda polarisation

Vector meson production

Hadron beam

Primakoff scattering Mesonspectroscopy

- Glueballs
- Hybrids
- Multi-quark states

Charmed baryons

SPS proton beam: 1.4 10¹³/spill of 4.8s, 400 GeV/c
 Secondary hadron beams (π, K, ...): 2.10⁸ /spill, 150-270 GeV/c
 Tertiary muon beam (80% pol). 2.10⁸ /spill, 100-200 GeV/c
 Luminosity ~ 5 × 10³² cm⁻² s⁻¹ with polarised targets

COMPASS

SPS

high energy beam(s), broad kinematic range, large angular acceptance

COMPASS spectrometer

E. Kabuß, Bad Honnef, 3.12.2010

Spin structure

2.4

2.2

2

1.8

1.6

1.4

1.2

¹0

0.1

0 070 <x<0 120

Data

- polarised ⁶LiD (L,T) data taking 2002-2006 dn⁺/dn⁻
- polarised NH_3 (L,T) data taking 2007

Analysis

- most results published or released for conferences
- analysis of single high p_T hadrons still going or
- focus on unpolarised physics from ⁶LiD (isoscalar)

Addendum

- 2010 NH₃ transversely polarised \rightarrow transversity, Sivers DF
- 2011 NH₃ longitudinally polarised \rightarrow low x g_1^p , strange quark polarisation

COMPASS 2004 LiD (part)

Spectroscopy results

- diffractive, central and Primakoff production
- π beam on Pb in 2004
- π and p beam in 2008/9
- IH_2 , Pb, Ni ,W targets

Exploring the 3-dim. phase-space structure of the nucleon

up to now: main focus on Δq quark helicity distributions Δq_{\perp} transverse quark distributions (from DIS and SIDS)

 \rightarrow longitudinal momentum structure of the nucleon

next step:

Generalised Parton Distributions

 \rightarrow accessible in exclusive reactions like DVCS and DVMP

Transverse Momentum Dependent Distributions

 \rightarrow accessible in SIDIS and Drell Yan processes

in addition: **QCD** at very low Q^2 : Pion Polarisability \rightarrow Primakoff processes

COMPASS II proposal:

submitted in May for 5 years of data taking in the first step recommended by SPSC in September for initally 3 years of data taking

Primakoff experiments with π, K

$$\pi^- Z o \pi^- Z \gamma$$

• Low energy behaviour predicted by chiral perturbation theory

$$\frac{\mathrm{d}\sigma_{\pi\gamma}}{\mathrm{d}\Omega_{cm}} = \left[\frac{\mathrm{d}\sigma_{\pi\gamma}}{\mathrm{d}\Omega_{cm}}\right]_{\mathrm{point}}$$
$$+ C \cdot \frac{s - m_{\pi}^2}{s^2} \left[(1 - \cos\theta_{cm})^2 (\alpha_{\pi} - \beta_{\pi}) + (1 + \cos\theta_{cm})^2 (\alpha_{\pi} + \beta_{\pi}) \frac{s^2}{m_{\pi}^4} + \mathrm{h.o.} \right]$$

- deviation from pointlike due to pion polarisabilities
- $\alpha_{\pi} \beta_{\pi}$ measured at backward angles, $\alpha_{\pi} + \beta_{\pi}$

2-loop chiral predictions $\alpha_{\pi} + \beta_{\pi} = (0.2 \pm 0.1)10^{-4} \text{ fm}^{3}$ $\alpha_{\pi} - \beta_{\pi} = (5.7 \pm 1.0)10^{-4} \text{ fm}^{3}$ experiments: $\alpha_{\pi} - \beta_{\pi} \text{ from 4 to } 14 \cdot 10^{-4} \text{ fm}^{3}$

Pion polarisability measurement

unique at COMPASS:

• availability of a muon beam (point like) for comparison and systematics

Summary for Primakoff

• already two (test)measurements performed, clear signal from Primakoff events

• expected precision of the new measurement:

in 120 days 90 days with π beam 30 days of μ beam	$\begin{array}{c} \alpha_{\pi} - \beta_{\pi} \\ \text{in } 10^{-4} \text{ fm}^3 \end{array}$	$\begin{array}{c} \alpha_{\pi}+\beta_{\pi}\\ \text{in } 10^{-4} \text{ fm}^{3} \end{array}$	$lpha_2-eta_2$ in $10^{-4}~{ m fm}^5$
2-loop ChPT prediction exp. accuracy	$5.70 \pm 1.0 \\ \pm 0.66$	$.016 \pm 0.10 \\ \pm 0.25$	$\begin{array}{c} 16 \\ \pm 1.94 \end{array}$

Generalised parton distributions

- novel concept: $H^f, E^f, \widetilde{H}^f, \widetilde{E}^f(x, \xi, t)$
- limits: q(x) = H(x, 0, 0) normal PDF $F(t) = \int dx H(x, \xi, t)$ elastic form factor
- Ji's sumrule for quark total angular momentum

$$J^{f} = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \ x \ \left[H^{f}(x,\xi,t) + E^{f}(x,\xi,) \right]$$

• Nucleon tomography: $q^{f}(x, \boldsymbol{b}_{\perp}) = \int \frac{d^{2}\boldsymbol{\Delta}_{\perp}}{(2\pi)^{2}} e^{-i\boldsymbol{\Delta}_{\perp}\cdot\boldsymbol{b}_{\perp}} H^{f}(x, 0, -\boldsymbol{\Delta}_{\perp}^{2})$

simultaneous measurement of longitudinal momentum and transverse spatial structure

Why GPDs at COMPASS?

- CERN high energy muon beam:
 - 100–160 GeV, 80% polarisation
 - μ^+ and μ^- with opposite polarisation

- unique kinematic range between HERA and HERMES/JLab
 - intermediate x_{Bj} : \implies sea and valence quarks
 - high x_{Bj} limit from acceptance
 - Q^2 up to $8 {\rm GeV}^2$
 - \implies limit from cross section with $L = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- planned measurements:
 - deeply virtual Compton scattering
 - deeply virtual meson production

Experimental requirements

Method

- same final state for BH and DVCS
- BH used a reference yield
- measurement with μ^+ and μ^- with opposite pol.
- yields Re and Im part of GPD H

Experimental set-up

- long liquid hydrogen target surrounded by recoil detector (2 layers)
- hermetic coverage with electromagn, calorimeter
- already a few test measurements

Projected results

- Transverse imaging: $B(x) \sim 1/2 \langle r_{\perp}^2(x) \rangle$ no model dependence
- Azimuthal dependence: comparison to different models $\implies c_1^I \propto \operatorname{Re}(F_1\mathcal{H})$

Transverse Momentum Dependent Distributions

- access to the transverse momentum in the nucleon
- at leading twist 8 TMDs (3 survive integration over k_T : q, Δq and Δq_T)
- examples of TMDs:
 - Boer-Mulders function h_1^{\perp} :

correlation of quark k_T and quark transverse spin in unpol. nucleons

- Sivers function f_{1T}^{\perp} : correlation of quark k_T and nucleon transverse spin
- Boer-Mulders and Sivers function are T-odd \rightarrow process dependent

$$h_1^{\perp}(SIDIS) = -h_1^{\perp}(DY)$$
$$f_{1T}^{\perp}(SIDIS) = -f_{1T}^{\perp}(DY)$$

• needs experimental verification, Sivers measurement needs polarised target

Drell-Yan at COMPASS

$$\pi^- p^\uparrow ~
ightarrow \mu^+ \mu^- X$$

- **DY**: convolution of two TMDs measured, **SIDIS**: TMD convoluted with fragmentation function
- complementary information
- ideal DY measurement: antiproton on proton
- good compromise π^- on protons
- DY dominated by annihilation of valence anti-quark from π^- and valence quark from polarised proton
- large acceptance of COMPASS in the valence region of p and π where large SSA are expected

Experimental requirements

- high intensity pion beam (up to $10^9/\text{spill}$)
- \bullet transversely polarised NH_3 target
- hadron absorber mandatory
- results from 2009 beam test

Predictions for Sivers asymmetry

• 3 ranges of study: above $J/\psi \ 4 < M_{\mu^+\mu^-} < 9$ GeV (clean signal), J/ψ , below $J/\psi \ 2 < M_{\mu^+\mu^-} < 2.5$ GeV (large background) prediction are given for high mass range

projections with 2 years of data $6 \cdot 10^8 \pi$ spill (9.6 s) 1.1 m pol. NH₃

key measurements:

TMD universality, change of sign from SIDIS to DY, study of J/ψ production mechanism

Conclusions and Outlook

COMPASS

- rich harvest in results on spin structure and spectoscopy
- PWA of hadron data just starting
- very sucessfull data taking in 2010 for transversity and Sivers DF
- next year will be mainly devoted to longitudinally spin physics

New proposal (COMPASS II)

- for 5 years GPDs, DY and Primakoff processes, already recommended by SPSC
- in parallel with GPD a rich programme in unpolarised DIS and SIDIS

On the long term

- more hadron beam running depending on the results
- DVCS with polarised target discussed
- DY with antiproton beam

COMPASS has a great potential in new fields and work is started to get the spectrometer upgraded for the new programmes