Likelihood Methods for Beam Particle Identification at the COMPASS Experiment

Tobias Weisrock for the COMPASS Collaboration

Graduate School Symmetry Breaking Johannes Gutenberg-Universität Mainz

SPIN-Praha-2012 July 7,2012

Outline

The COMPASS Experiment

Hadron Physics @ COMPASS

Beam Particle Identification @ COMPASS

Beam Particle Identification using Likelihoods

Efficiency and Purity of the Likelihood Method

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

Very broad program

- Very broad program
- Spectroscopy
 - ▶ Different final states
 - \triangleright 3 π , 5 π , K $\pi\pi$,...
 - Search for exotic states

- Very broad program
- Spectroscopy
 - Different final states
 - \triangleright 3 π , 5 π , K $\pi\pi$,...
 - Search for exotic states
- Primakoff program
 - $ightharpoonup \pi
 ho
 ho$
 - Measure pion/kaon polarizabilities

- Very broad program
- Spectroscopy
 - Different final states
 - \triangleright 3 π , 5 π , K $\pi\pi$,...
 - Search for exotic states
- Primakoff program
 - $ightharpoonup \pi
 ho
 ho$
 - Measure pion/kaon polarizabilities

Example: $\mathbf{K}\pi\pi$ analysis

Analysis of diffractive dissociation of K^- into $K^-\pi^+\pi^-$ on a liquid hydrogen target at the COMPASS spectrometer, PhD Thesis P. Jasinski (JGU Mainz)

Event Selection

- ▶ Incoming kaon
- Primary vertex in target with 3 outgoing charged tracks
- \blacktriangleright Four momentum transfer $0.07 < t' [{\rm GeV^2/c^2}] < 0.7$
- ▶ One negative particle identified with RICH

Partial Wave Analysis

- disentangle $K\pi\pi$ spectrum
- several resonances found
- further investigation needed (mass dependent fits)

Partial Wave Analysis

- disentangle $\mathbf{K}\pi\pi$ spectrum
- several resonances found
- further investigation needed (mass dependent fits)

JP	mass $({ m GeV/c^2})$	possible state
0-	1.30	K(1460)
1+	1.25	$K_1(1270)$
1+	1.35	$K_1(1400)$
1+	1.80	$K_1(1650)$
1-	1.75	K*(1680)
2+	1.44	K ₂ *(1430)
2-	1.70	K ₂ (1770)
2-	1.85	$K_2(1820)$
2-	1.9 - 2.2	several

Partial Wave Analysis

- lacktriangle disentangle $oldsymbol{\mathsf{K}}\pi\pi$ spectrum
- several resonances found
- further investigation needed (mass dependent fits)

JP	mass $({ m GeV/c^2})$	possible state
0-	1.30	K(1460)
1+	1.25	K ₁ (1270)
1+	1.35	$K_1(1400)$
1+	1.80	$K_1(1650)$
1-	1.75	K*(1680)
2+	1.44	K ₂ *(1430)
2-	1.70	K ₂ (1770)
2-	1.85	$K_2(1820)$
2-	1.9 - 2.2	several

Only pprox 50% of kaons used due to bad efficiency of beam particle identification. $^{\circ}$

Beam Particle Identification @ COMPASS

- Two CEDAR detectors
- ▶ 30 m upstream of the target

How does a CEDAR work?

- ► CEDAR = ČErenkov Differential counters with Acromatic Ring focus
- Fast charged particles emit Čerenkov light with angle $\cos(\theta) = \frac{1}{n\beta}$

How does a CEDAR work?

- Čerenkov light detected with 8 PMTs
- ▶ Particle identification using multiplicities, e.g. 6 of 8 PMTs

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- ► Kaon ring leaves acceptance, pion ring enters
- Multiplicity method does not work for divergent beams

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- ► Kaon ring leaves acceptance, pion ring enters
- ▶ Multiplicity method does not work for divergent beams
- Find a method which takes divergence into account

General Idea

- ▶ Look at response of single PMTs for kaon and pion seperately
- ► Take care of beam divergence
- Identify beam particles using likelihoods

General Idea

- ▶ Look at response of single PMTs for kaon and pion seperately
- ► Take care of beam divergence
- Identify beam particles using likelihoods

5 steps to take

- 1. Measure beam divergence
- 2. Create a pure kaonsample and a pure pionsample
- 3. Determine probabilities to have hits in PMTs for pion and kaon
- 4. Calculate likelihoods from probabilities
- 5. Use likelihoods to identify particles

Step 1: Measure beam divergence

- ▶ Measure beam position in front of (x_1, y_1) and behind (x_2, y_2) CEDARs
- Calculate relative displacement $\Delta_{x} = \frac{x_2 x_1}{1283,4 \, \mathrm{cm}}$
- ▶ Divergence $\theta_x = \arctan(\Delta_x) \approx \Delta_x$

Tobias Weisrock (JGU Mainz)

Step 2: Create a pure Kaonsample and a pure Pionsample

Create a Kaonsample and a Pionsample

- Kaonsample
- ightarrow Use free Kaon decay ${\sf K}^-
 ightarrow \pi^-\pi^-\pi^+$
 - 3 outgoing particles with correct charged
 - Primary vertex outside of the target
 - Cut on transverse momentum and Kaon mass
- Pionsample
- ightarrow Use diffractive production $\pi^- p
 ightarrow \pi^- \pi^- \pi^+ p$
 - 3 outgoing particles with correct charge
 - Primary vertex inside the target
 - ▶ Small angle to beam direction, similar momenta → same mass

In addition: Take a beamsample without any filtering for testing the method

Example: Particle with divergence θ_x , θ_y produces signal in PMT **i** Question: Is it a kaon?

 \rightarrow Use Bayes' Theorem:

$$P_{\theta_x,\theta_y}^{i}(Kaon|Signal) = -$$

Here:

Example: Particle with divergence θ_x , θ_y produces signal in PMT **i** Question: Is it a kaon?

→ Use Bayes' Theorem:

$$P_{\theta_x,\theta_y}^{i}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{P_{\theta_x,\theta_y}^{i}(\mathsf{Signal}|\mathsf{Kaon}) \cdot}{}$$

Here:

$$\mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Signal}|\mathsf{Kaon})$$
: Probability that Kaon at θ_{x} , θ_{y} (\to Kaonsample) produces signal in PMT i

Example: Particle with divergence θ_x , θ_y produces signal in PMT i Question: Is it a kaon?

→ Use Bayes' Theorem:

$$\mathbf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathbf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Signal}|\mathsf{Kaon}) \cdot \mathbf{P}_{\theta_{x},\theta_{y}}(\mathsf{Kaon})}{\mathsf{P}_{\theta_{x},\theta_{y}}(\mathsf{Naon})}$$

Here:

 $\mathbf{P}_{\theta_{x},\theta_{y}}^{i}$ (Signal|Kaon): Probability that Kaon at θ_x , θ_y $(\rightarrow Kaonsample)$ produces signal in PMT i

 $P_{\theta_{x},\theta_{y}}$ (Kaon): Probability that Kaon has diver- $(\rightarrow Kaonsample)$ gence θ_x and θ_y

Example: Particle with divergence θ_x , θ_y produces signal in PMT **i** Question: Is it a kaon?

→ Use Bayes' Theorem:

$$\mathbf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathbf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Signal}|\mathsf{Kaon}) \cdot \mathbf{P}_{\theta_{x},\theta_{y}}(\mathsf{Kaon})}{\mathbf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Signal})}$$

Here:

 $P_{\theta_x,\theta_y}^i(Signal|Kaon)$: Probability that Kaon at θ_x , θ_y (\rightarrow Kaonsample) produces signal in PMT **i**

 $P_{\theta_x,\theta_y}(Kaon)$: Probability that Kaon has diver- (\rightarrow Kaonsample)

gence θ_{x} and θ_{y}

 $P_{\theta_x,\theta_y}^{i}(Signal)$: Probability that signal in PMT **i** ist $(\rightarrow Beamsample)$ produced at θ_x , θ_y

Step 3 continued

Pions and Kaons have the same divergence distribution:

$$P_{\theta_x,\theta_y}(Kaon) = P_{\theta_x,\theta_y}(Pion) = P_{\theta_x,\theta_y}(Beam)$$

 \Rightarrow $\mathbf{P}^{\mathbf{i}}_{\theta_{\mathbf{x}},\theta_{\mathbf{y}}}$ (Kaon|Signal) and $\mathbf{P}^{\mathbf{i}}_{\theta_{\mathbf{x}},\theta_{\mathbf{y}}}$ (Pion|Signal) have same normalization

factor
$$\frac{P_{\theta_x,\theta_y}(\text{Beam})}{P_{\theta_x,\theta_y}^i(\text{Signal})}$$
, thus

$$P_{\theta_x,\theta_y}^{i}(Kaon|Signal) \propto P_{\theta_x,\theta_y}^{i}(Signal|Kaon)$$

 $P_{\theta_x,\theta_y}^i(\mathsf{Pion}|\mathsf{Signal}) \propto P_{\theta_x,\theta_y}^i(\mathsf{Signal}|\mathsf{Pion})$

Also calculate

$$P_{\theta_x,\theta_y}^i(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \text{ and } P_{\theta_x,\theta_y}^i(\mathsf{Pion}|\overline{\mathsf{Signal}})$$

Additional Cut

- Statistics bad for large divergences
- Cut out events with

$$r=\sqrt{\theta_{x}^2+\theta_{y}^2}<200\times10^{-6}$$

► About 20% of all events are lost this way

Step 4: Calculate likelihoods from probabilities

▶ To obtain the log likelihood just add logarithms of probabilities

$$\begin{aligned} \log L(\mathsf{Kaon}) &= \sum_{i \in \mathsf{PMT} \ \mathsf{with} \ \mathsf{Signal}} \log P^i_{\theta_x,\theta_y}(\mathsf{Kaon}|\mathsf{Signal}) \\ &+ \sum_{i \in \mathsf{PMT} \ \mathsf{without} \ \mathsf{Signal}} \log P^j_{\theta_x,\theta_y}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \end{aligned}$$

- Calculate the same for Pions.
- Compare them

Kaonsample

Pionsample

Step 5: Use likelihoods to identify particles

- Compare log likelihoods to get an ID for each CEDAR:
 - ▶ $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
 - $\blacktriangleright \, \log \mathsf{L}^\pi > \log \mathsf{L}^\mathsf{K} + \mathsf{B} \Rightarrow \mathsf{PID} \; \pi$
 - else no PID given
- ► Tune **A** and **B** due to efficiency/purity.

Step 5: Use likelihoods to identify particles

- Compare log likelihoods to get an ID for each CEDAR:
 - ▶ $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
 - $\qquad \qquad \log \mathsf{L}^{\pi} > \log \mathsf{L}^{\mathsf{K}} + \mathsf{B} \Rightarrow \mathsf{PID} \; \pi$
 - else no PID given
- ► Tune **A** and **B** due to efficiency/purity.
- ► Combine CFDARs afterwards

	?	π	K
?	?	π	K
π	π	π	?
K	K	?	K

Calculation of Purity

Look at

$$h^-p \to h^{\prime -} K_S^0 p$$

Then one knows (due to conservation of strangeness):

 \rightarrow Identify $\mathbf{h'}^-$ using the RICH and count the "wrong" particles

Select $h^- = \pi^-$

For CEDAR pions RICH should only see kaons ($\log_2\left(p(K)/p(\pi)\right)>0$) Look at events with $p<50\,\mathrm{GeV}$, cut out ±0

Purity of Pion Selection

- Independent of likelihood cut
- ► ≈ 40% better than multiplicity

Select $h^- = K^-$

For CEDAR pions RICH should only see pions $(\log_2 \left(p(K)/p(\pi)\right) < 0)$ Look at events with $p < 50 \, {\rm GeV}$, cut out ± 0

Purity of Kaon Selection

- Independent of likelihood cut
- Compatible with multiplicity method
- Compatible with pion purity

Calculation of Efficiency

Look at expected number of particles in the beam 2.4% kaons, 97% pions

 \Rightarrow Efficiency of around 80% for pions and kaons Efficiency for kaons \approx 60% better than for multiplicity method

Direct Comparison with multiplicity Method

Direct Comparison with multiplicity Method

► Most of multiplicity kaons reproduced as kaons (896 of 1074, 83%)

Direct Comparison with multiplicity Method

- Most of multiplicity kaons reproduced as kaons (896 of 1074, 83%)
- 920 additional kaons from multiplicity pions

Summary

- ► COMPASS hadron beam consists of 97% pions and 2.4% kaons
- Pions and kaons have to be identified for analyses
- ightharpoonup multiplicity method only identifies pprox 50% of the kaons
 - Problems with divergent beams
- Likelihood method improves identification for divergent beams
 - ▶ Identifies 80% of the kaons with 87% purity.

Summary

- ► COMPASS hadron beam consists of 97% pions and 2.4% kaons
- Pions and kaons have to be identified for analyses
- ightharpoonup multiplicity method only identifies pprox 50% of the kaons
 - Problems with divergent beams
- Likelihood method improves identification for divergent beams
 - ▶ Identifies 80% of the kaons with 87% purity.

Outlook

- Adapt methods to 2009/2012 data taking
- Do finetuning using existing hadron analyses
- Redo $K\pi\pi$ analysis

