First results on the longitudinal double spin asymmetry for identified hadrons from the 2011 COMPASS data HK 9.4

Malte Wilfert for the COMPASS collaboration

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

14th March 2016

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung

Malte Wilfert (KPH Mainz)

DPG 2016

14th March 2016 1 / 12

Deep Inelastic lepton nucleon Scattering

• DIS:
$$\ell + N \longrightarrow \ell' + X$$

• SIDIS: $\ell + N \longrightarrow \ell' + h + X$

DIS variables

- Photon virtuality:
- Bjorken scaling variable: $x = \frac{Q^2}{2 \cdot P \cdot n}$

• Relative photon energy: $y = \frac{E - E'}{E}$

Hadron variables

- Hadron energy fraction: $z = \frac{E_h}{E E'}$
- Transverse momentum: p_{T}
- Longitudinal momentum: **p**_L

 $\ell[k]$

 $Q^2 = -q^2$

*|**q**|

N[P

The COMPASS experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

• M2 beamline

Polarised Deep Inelastic Scattering

• Photon nucleon asymmetry

- Absorption of polarised photons $\sigma_{1/2} \sim q^+ \sigma_{3/2} \sim q^-$
- Parton distributions: $q(x) = q(x)^+ + q(x)^ \Delta q(x) = q(x)^+ - q(x)^-$

$$A_{1}(x,Q^{2}) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \approx \frac{\sum_{q} e_{q}^{2}(q(x)^{+} - q(x)^{-})}{\sum_{q} e_{q}^{2}(q(x)^{+} + q(x)^{-})}$$

• Spin structure function

$$g_1(x,Q^2) = A_1(x,Q^2) \cdot F_1(x,Q^2) \stackrel{\text{LO}}{=} \frac{1}{2} \sum_q e_q^2 \Delta q(x)$$

Hadron Asymmetries

$$A_{1}(x) = \frac{\sum_{q} e_{q}^{2}(\Delta q(x) + \Delta \overline{q}(x))}{\sum_{q} e_{q}^{2}(q(x) + \overline{q}(x))}$$
$$A_{1}^{h}(x, z) = \frac{\sum_{q} e_{q}^{2}(\Delta q(x)D_{q}^{h}(z) + \Delta \overline{q}(x)D_{\overline{q}}^{h}(z))}{\sum_{q} e_{q}^{2}(q(x)D_{q}^{h}(z) + \overline{q}(x)D_{\overline{q}}^{h}(z))}$$

- Calculate asymmetry for hadrons $(\pi^{\pm}, \mathcal{K}^{\pm})$
- Particle identification needed
- Use the RICH detector
- Determine identification efficiencies
- Access to all helicity distributions ∆q(x), ∆q(x), q = u, d, s
- Dependence on fragmentation functions $D_q^h(z)$

Measured asymmetries

DPG 2016

6 / 12

The RICH detector

5.3 m

6.6 m

- Using the Cherenkov effect
- Ring projected on photo detectors
- Likelihood method for identification

Efficiency determination - method I

- Needed: Known particle ID without RICH information
- Use:
 - $K^0 \longrightarrow \pi^+ \pi^-$
 - $\bullet \ \phi \longrightarrow K^+K^-$
 - $\Lambda \longrightarrow \pi^- p$
- Tag one of the decay particles using the RICH (e.g. π⁻ from K⁰ decay)
- ID of the second particle known (must be π^+)
- Check the answer from the RICH (Identified as $\pi/K/p/\mathrm{noID}$)
- Assumption Efficiency depends mainly on particle momentum and entry angle
 - Strong momentum dependence: 13 bins (10 50 ${\rm GeV}/c)$
 - Weak angular dependence: 4 bins $(0 0.3 \,\mathrm{rad})$

Efficiency determination - method II

- Fit of the invariant mass spectra
- Fit simultaneously all five histograms
- Constrain on N(all) = N(π) + N(K) + N(p) + N(noID)
 → Efficiency between 0% and 100%
- Efficiency $\epsilon(\pi^+ \to K^+) = N(\pi \to K)/N(all)$
 - *N*(*all*) constrained by first histogram (all particles)
 - $N(\pi
 ightarrow K)$ from third histogram (π identified as K)

RICH efficiency

10 / 12

Malte Wilfert (KPH Mainz)

DPG 2016

Purity determination

- Coverage in the angle θ and momentum p
- Only one x-bin shown
- So far: RICH efficiency \rightarrow detector property
- Needed: Purity/Contaminations
 → physics quantity
- Determined by:
 - Number of true hadrons
 - Number of Identified hadrons
 - RICH efficiency

Purity determination

- Coverage in the angle θ and momentum p
- Only one x-bin shown
- So far: RICH efficiency
 → detector property
- Needed: Purity/Contaminations
 → physics quantity
- Determined by:
 - Number of true hadrons
 - Number of Identified hadrons
 - RICH efficiency

Malte Wilfert (KPH Mainz)

Purity determination

- Coverage in the angle θ and momentum p
- Only one x-bin shown
- So far: RICH efficiency
 → detector property
- Needed: Purity/Contaminations
 → physics quantity
- Determined by:
 - Number of true hadrons
 - Number of Identified hadrons
 - RICH efficiency

- Identified hadron asymmetries
 - Method for extracting RICH efficiencies
 - Determination of the hadron purities
- Outlook
 - Final results for the identified hadron asymmetries
 - Extraction of polarised PDFs for each flavour